The introduction of advanced optical fiber splicing technology

Tomohiro KONUMA Fujikura Europe Ltd.

Internet Traffic Volume Trend

✓ Required the solution for the backbone traffic capacity

How correspond to traffic increasing?

Installing more cable?

Keep the cable size and increasing the traffic capacity of cable will be our way!

- How to achieve?
- Minimize fiber coating (200um coating fiber)
- Multi Core Fiber(MCF)

7-MCF

For new fiber, <u>NEW splicing technology</u> is required!!

Alignment and heating function

Optical Path System

Optical Path System

Camera Image
✓ Splicer observe the fiber side view
Fujikura

Multi Core Fiber (MCF) Splicing

Issues for MCF splicing

Outer cores that locate apart from the center of cladding

1. Fiber Alignment

✓ Fiber rotation for alignment with precise core position detection

2. Fiber heating

✓ Uniform heating for all out side core

Special Splicer(FSM-100P+) for MCF splicing

MCF Alignment Issues

Considerable Alignment methods

	Pro	Con		
Manual Alignment	 Available current fusion splicer 	 Very difficult to recognize the each core position Performance will depends on operator skill 		
Automatic Alignment	Available current fusion splicerAccurate alignment	Alignment algorism must be optimized to each fiber structure		
Power meter feedback alignment	 Very Accurate alignment 	 Measurement system is necessary. (Impractical in filed use) 		

Side View Image(standard splicer image) is not enough for MCF alignment.

MCF Alignment (End-View)

Observed Fiber End-Face image

7-MCF (PCF)

Automatic MCF Alignment

7-MCF Automatic alignment with End-View

MCF Heating Issues

Weakness of static electrodes system for MCF heating

- Adequate temperature region is narrow.
- Temperature of outer cores are unstable.

Splice loss variation depending on the core position

MCF Heating Solution

Electrodes Oscillation

 Adequate temperature region can be enlarged by electrodes oscillation

MCF Splicing Performance

Item	Value	
Cladding diameter	181 µm	
MFD at 1550 nm	12.1 µm	
A _{eff} at 1550 nm	112 µm²	

	Splice loss [dB]			Number of data
	Average	Max	Min	Number of data
Swing Electrodes	0.08	0.18	<0.01	30
Static Electrodes	0.15	0.35	<0.01	30

Fan-In/Fan-Out Device by CO2 laser splicer

Splicer is not for splicing but also glass processing!

- 5x 125um SM outer fibers
- 1x 80um SM center fiber

✓ Fan-In/Out application has developed by LZM-100 CO2 Laser splicer

Conclusion

- ✓ Fujikura has developed the solution for MCFs connection solution.
 - End-View function for MCF automatic alignment
 - Electrodes oscillation function for wide-area uniform heating
 - Fan-In/Out application manufacturing

Specialty Splicer FSM-100P+

CO2 Laser Splicer LZM-100

Thank you.

